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ABSTRACT

Under the rather general conditions it is possible to represent a

4-port by. means of an ideal directional-coupler together with certain 2-ports

n

in each of its lines. Such a representation is called the " canonical-form"

of the given 4-port.

The canonical-form of two tandem-connected 4-ports and the coupling

coefficient of the associated ideal directional coupler are determined.

The preséentation is of a theoretical nature.
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Introduction and Summary

An early result by Kyhl [qu. 2] demonstrated that any " non-fiege’nerate'
lossless, reciprocal 4-port may be represented as an ideal directional ééupler with
certain lossless; reciprocal 2-ports in each of its lines. Such a form will be '
referred to as the " canonical form" of the given. 4-port. Further work by
Kahn and Kyhl [Ref. 1] yielded formulae which expressed the parameters of the
associated ideal directional coupler.and the appropriate 2-ports in terms of the

characteristics of the given 4-port,

The transfer-scattering formalism was adopted because the cascading
of 2N-ports is equivalent to the multiplication of the corresponding transfer

matrice 8.

It will develop that the question of whether or not the determinants of
certain submatrices of the transfer-scattering matrix are real numbers is of
fundamental importance. Kahn and Kyhl imply their reality by assuming the
existance of the canonical form., Herein a proof of their reality is given based

solely on the restrictions of losslessness and reciprocity.

The transfer matrix of an ideal directional coupler can be of only three
possible forms corresponding to any permutation of port designations, This
report centers on the problem of determining the canonical form of two tandem’
connectea 4-ports in terms of the parameters of the canonical forms of each

of them, Nine cases were considered which exhaust all possibilities,

The results of this endeavor are presented in table III. It is noteworthy
that the form of ideal directional coupler associated with two type three couplers
is always a type three,

(i) Some Definitions and Notations

Throughout this work certain matrices and products of these matrices
recur with sufficient frequency to justify the construction of a table of matrix

products and other pertinent information.

There are essentially three such matrices:
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The table of interest appears below,

K| k! kK| k' | detk
g g 1 o -1
' Pl op 1 | e -1
A A A
p|-p 1| -p 1

_{ii) Some Matrix Conventions

a) The inverse of a matrix A will be denoted by Al

b) If A is the Nx N matrix

,3 A1 00 AN
| .
AN1... NN

N
the trace of Ais Tr A= ) Aii
i=1

c)If A is an N x N matrix, the transpose of A isthe Nx N

matrix Al formed by letting the iﬂi column of A be the it—l-1 row

of At.
d)Ifz = re® is a complex scaler, the complex conjugate of Z is
denoted by z* and Z* = re”)® .




e)If A isan N x N matrix the matrix

* *
Al ee A
- .
ANt ANN

will be denoted by A"

f) The matrix (At)* will be denoted by At
g) The N x N matrix with ones along its principal
diagonal and zeros everywhere else will be denoted by

L 1 o0 ... o0

0 1 0




(i) Definition of an N-port

In this study we shall assume that all voltages and currents are of constant
frequency and that the frequency is " high enough" so thata " transmission line
approach" becomes convenient, .

An N-port is a structure,access to which is gained by means of N trans-
mission lines. On each line we shall assume a position is available at which it
is possible to measure a current and a voltage, There are N such places

available in an N-port and each such position will be called a port,

(ii) Impedance Representation of an N-port

On the kt-*-x line the voltage and current,whose reference directions are as.
shownqare related by the following pair of first order equations:

e w G

- -~ (1
" T ) T e Mk

k=1,..., N

where vk(x) and 1k(x) are the voltage and current measured at the point x on the
kt'll line; Yie is the propagation constant of the kl‘ line and zk = Yk ‘1 s the

(real positive) characteristic impedance of the ktll line,

It will be useful to define a new set of so-called 'norma.lized" voltagol

and currents Vi and o respectively by
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In particular the set of normalized voltages and currents are related
to the old set by

(2)

(3)

(4)



1f the new set is substituted into (1) there results

o AU I RN
(5)

- = b T )

which is equivalent to saying that the kg‘ line has a characteristic impedance of
unity corresponding to v, and i.k. It is convenient to deal exclusively? with the
normalized quantities i and "k because every N-port having lines of characteristic
impedance ;k corresponding to ;k and Ikcan be transformed into one having

characteristic impedance of unity and terminal quantities i and i‘k' The converse

is also true,

The normalized impedance representation is

- I — -} r b
M ) eer N 4
. = . . . (6)
V. z 4
| N | N NN || N
where
- vk k = 1. ess N
% B |
[} L% 1, +0., N (7

withi_= 0, m=1, ..., N, m#!

Although we shall not be concerned with the impedance representation
as such, its presentation complements the " s~ :tering" representation next to
be discussed,



(i41) Scattering Representation

The normalized scattering parameters a, and bl< associated with the
ki line are defined by |

S v ) +i (x)) = ay (x)

(8)
5 (v (%) -4 (x))= by (x)
= 1’ eve N .
Using these relations, (5)is transformed into
d =
T 2k () =) oy (%)
. (9)
T Bk %) = v By ()
k = lp see N »
whose solutions are
‘ak(x) = a (0)c Y *
b, (x) = b (0)e) Y ™ (10)
k = 1. ees N .

The quantities a, (x) and bk (x) represent amplitudes associated with
wave motion in the x and ~x directions respectively, at the point whose
coordinate is x on the k@ line, Treating the quantities a as independent
parameters and the quantities bk as dependent we can write

b
1 Alp e AN 3
L] . [ .
= (11)
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where
s = bi i= l. o.-’N
ij aj j = 1. ooo.N
ak =,0. k = 1. ooo,N. k #J’ .

The utility of the scattering matrix representation resides in the concise
expressions which result in scattering terms when constraints imposed by

losslessness and lorentz reciprocity, among others, are imposed.
We now state without proof two fundamental results:
" Conservation of energy and Lorentz Reciprocity respectively imply
ss+ = 1 and St = S. (12)
where S is the N x N matrix

. -]

ij o IN

ANl ANN J

(iv) Partitioned Matrices

It will be found convenient to partition a matrix into submatzrices and to

consider it as a2 matrix whose elements themselves are submatrices.

For example the 4 x 4 matrix T

i th Y1z Y13 Yy i
t21 t2z t23 ta4
T t31 t3z t33 tag ()
tyy a2 t43 tyq ]

may be partitioned into

{— ™Th ’ T2 _]
T = (14)
L T2y l Tzzﬁ}




ot

_ e e ot e R
ST

where

' t2

11 = » oo
21 t22

We shall denote a partitioned matrix by the horizontal and verticle lines as
shown by (14). Let U be the matrix

1
Y11 912 Y13 U4
B21 Y22 Y23 Y4
U = Ug) Ujzp U3z Ugy (15)
Vg Y42 U433 Y44
L -
and let it be partitioned
[-U11 ' Ulz-]
U = (16)
U Uz2
where
Y11 Y12
Uy, = voere (17)
Y21 Y22

Then the product of partitioned matrices

' T T
11 121l_U11 lTll Ut T2 Upy | T U+ T}, Uy,
TU =
T T :
L 21 zzJLsz Uzz] LT21U11 * T2 Uzy| T2y Uy + Ty Uzzi

when expanded, is equivalent to the product TU when T is of form (13) and U of
form (15).

U12
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(V) Transfer - Scattering Representation

The (normalized) transfer-scattering matrix or simply the transfer matrix
of an N-port arises as an outgrowth of the basic scattering concept. It affords
a:natural way of providing a scattering description of n tandem connected
2 N-ports because the process of connecting 2 N-ports-in tandem is equivalent
to multiplication of the representative transfer matrices of each 2 N-port,

Let Abe a 2 N-port and suppose each port is assigned a number from
1 to 2N, Further suppose that the 2N-ports are grouped into two sets of N
ports such that ports 1 to N will be called inputs; ports N + 1 to 2N will be
called outputs, Then a transfer matrix of the 2N-port is the 2N x 2N matrix
(t, j) defined by

bN+1 ] _tll cee tl. 2N N Fal ]
AN+ 1 : .. b,
PN +2 ' ' 2
AN+2 ) bz (19
b2N tan, 1,.. t2N, 2N | ] 2N
] AN J — N i bN_

Clearly the essence of the transfer matrix point of view is that it treats
the 2N terminal quantities a s by of N selected ports called the input as
independent variables while the remaining 2N terminal quantities associated with
the N output ports are dependent variables. It follows that another possible:
transfer matrix of Ais



11

— _— —

bN+1 ull voe ul.ZN
‘ bZN

AN+1

uZN. 1 LN )
a
2N -

L _

U2N, 2N J

(19)

" However we shall deal exclusively with the transfer matrix defined by (18) .

Consider two 2N=-ports A 1 and A2 connected in tandem as shown

| N+1 |

|
1
1)
. o
. K N+Kc| . K
A '11'
) L
. N an N
|

N+
-

[N+ K .

2N .

—

and in particular let us study in detall the connection of the (N + k)® port of A |
to the k121 port of Az + As was defined earlier the reference directions at the

th

(N + k)t-!l port of A 1 and the X= port of Az are schematically

i(Z) . '(l)

k ¢4<N+k

+ | +

(2) n

Yk | IN+k
|
t
X—9 X~ AXIS

where the superscripts 1 and 2 refer respectively to A1 and A2
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This implies

L

ek ) = v

Now from (8)
sl = F (0 gy 09)

Bihe 00 = lrgp (0 = gy ()

and
2P = Fv 0+ 1 )
2 () = v, (1) -1 (%))

When (20) is substituted into (21) and (22) we find

altl 0 = b
W = o

(20)

(21)

(22)

(23)

Suppose Tl and T2 are the t?ansfer matrices of A1 and A2 respectively. Then

1 1
PN+l a
1 1
AN+1 by
. = T
. 1
1
bZN a.N
1 1
L 2N ] by

(24)



and

or

N ]

But (23) implies

N+1

AN+1

13

Zw

Zn

ol V)

1
(25)
.
(26)
(27)
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It follows that if n 2N=ports are connected in tandem then

r—
[ b

n "
N+1

n
boN
aIl
| 2N |

all four - ports.

T
n

eee T

Suppose the scattering representation

o~
by tn
3.3 .
by = .
ay t4)

1 L
by 11
b, :
by = .
by 841

.o 1:.14
.
.o 5.14
.

L

ay
a3
24

is given. It will be useful to determine the parameters t f
parameters sij' From (30) it follows that

831 B32 B33 ’3;—

0 0 1 0

f41 P42 B43 P44
o o0 o 1

—

i

2

-

22
3

We shall now consider a special class of 2N-ports namely the set of

in terms of the

(28)

(29)

(30)

(31)



and

|
T
1

[
[N

L 4

- 7]
31 "3z "33 "4
0o o 1 0

%41 42 ®43 P44
o o o 1

L —

(Vi) Directional Couplers

—

15

21 "2z %23 ®24 ]

(32)

An "ideal directional coupler® henceforth abbreviated by I.D.C. is a
lossless, reciprocal four ~ port, the scattering matrix of which has zeros along
the main diagonal when each port is terminated in the characteristic impedance of

the corresponding transmission line.

From (18) the transfer representation of a four - port is

831 S13 S24
=531 S14 S23
=511 S33 Sz
511 S34 S23
531 533 Si4
=521 S34 S13
(33)
-S24 S11
514 S21
Tn

5135247514553 {+S4; 53 S24
=541 S14 523
=511 S43 S24
8] Sgq Spy
521 S43 S14
=521 S44 13
53 S
Csl3 S21

+S S +S

33 24 32

S =S

=534 53 32

=512

+Slz

22

522

-S54

+S14

|
|
|
|
| +s
|
|
|
|
|

S13

514

Si3

S34

S33

S34

-S33 Sy4

513

+513
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To each numbering of the ports of a device which is an I. D. C. there
corresponds a form of scattering matrix. Since there are twenty-four ways
of numbering the four ports there are twenty-four possible "forms" of
scattering matrix assoclated with a given I. D. C. We shall say a "form" of
scattering matrix is defined by the distribution of zeros in the matrix. If the
twenty=-four possible forms of scattering matrix associated with an I. D. C. are
written and compared there appear to be only three different forms. The

scattering matrix of an . D. C. must assume one of the three following forms:

0 0 a jB 0 a 0 jB 0 jB.a o0
sp=| 00 e N s;= [P0 00y
a jp O o0 0 jB 0o a a 0 i
jB a 0 0 , B O a 0 4, a jB O
where a and P are positive real numbers and
o 4 p% =1 (35)
Note that forms 1 and 2 collapse into
0 0 0 j
0 0 3j O
0 j 0 0 (36)
j o 0 0
for a = 0 and forms 1 and 3 collapse into
0 0 1 o
0 0 0 1
1 00 0 37)
01 0 0
L _J

whena = 1.

Corresponding to each form of scattering matrix there is a transfer matrix

which similarly assumes one of the three forms:
a ol o

T, =0 10 P (38)

0 -jplO a ’



S |
QZIpZ o ;

0 L

Ty=| — — — — — |
o 4P

_j% 0

SR
-j_g,
0 ’
o
0 J-E—
GJE
02+ﬂ2 0
a
I
_
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(1) A Proof That the Determinant of a Partitioned Submatrix of T is Real.

We shall now derive a result which will be of fundamental importance in
our later work. If the matrix T in (29) is partitioned naturally into four 2 x 2
submatrices as shown, then the determinants of these submatrices are real.

This we now prove.

A direct computation shows that

S,4 537 =5, S
det T.. = 24731 7721734

11
513 524 =514 Sp3
S.,S.. =5, S
det T, = 13 542 =512 543
513 5,4 =514 5,3
(40)
S., S., =S,, S
det T, = 14 S32 =512 S34
514523 813 554
S..S,. =5,.8
det T, = 23 541 5,1 543
523514 =554 513
Invoking the principle of reciprocity, it can be seen at once that
(a) det T); = det T,,
(b) det T, = det T,, (41)
and {c) 1 - det Tll = detT12
From (12) we find
[ j B L3 L LS *T B —T
S11 812 S13 Si4 S11 Sz1 831 S4 1.0 00
S., S.. S.. S s ¥ g * gk gk 0 1
21 S22 °23 S24 12 °22 ®32 Sg2 0 0 (42)
. * % * 3 =
531 S3z S33 S3y S13 523 S33 Sy 00 10
% % * 3
| 51 Ss2 S43 Sa3 | | S14 Saq S3s Sy 0001
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By multiplying appropriately, the following expressions can be obtained:

%* *

X ot s, 8.5 =0 (43)

S31 Sp3 (Spp Sy * Sz Spz t Sp3 Sy3 t Sy Spy) =

L * * % * *
821 523 (S31 511 ¥ S3p Spp + S33 Sy3 % Sy Sye) = 0 (44)
* % * * *

S21 513 (831 Sp1 * S3p Spp * S33 83 * Sy Spe) =0 (45)
where the factor outside the bracket has been added as a gulde to subsequent
manipulation, and also
' * % % % %

Sy3 Sp1 (Syp S3p * Syp S3p t Sy5 Sz3 + Sy Sgy) = 0 (46)

Sin S (8., ST 4 8, S, s, 5.4 s, 5. =

13 Sp1 Sz1 S3p + Sz S35 + Sp3 S33 S,y S3u) = 0 (47)
* s¥+s. s s, s i s, 80 =
Sp3 S31 (Sp1 Spp * Spp Spp t Sy3 Sp3 b Sy Spu) = 0 (48)
The set of equations (43) to (45) can be put in the following form:
% * " * * s
Sp1 Sp3 S34 S1a - Sz4 S14 S3y 53 - Spp S13 S34 Sy (49)
_ * s * * g *
= Sy Sy S31 Sp3 * S3y 853 S53 S)3 - S, 5,3 83, S,
s s % *
t 5,1 813 531 Sp1 * 5, Sy3 832 Sy,
and similarly the set (46) to (48) yield
S * % S S * % * *
523 S14 521 S34 = S24 S13 Sp1 S34 - Sp3 Sy 5S4 S5 (50)
% * *
= = 5,3 5,1 815 8,5, * 815 8,1 851 837t S13. 8, 85,, S;,
s..s " s._ s> s x s
t 8,3 S3; 512 Sp2 t 533 831 Si3 Sy,
Due to the reciprocity condition it is apparent that
s * % *« * %
S21 553 S34 S14 = Sp4 S14 S31 Sp3 - Sp) Sy3 85, S, (51)
= * g0 X * % L
5,3 S14 Sz Si4 S,4 513 S21 S34 = Sy3 Sy Sp4 S5,
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Now
* * . S,% - S, 8.3 S,, S,4
S,1 833 834 S14 = Sa4 S14 831 Sp3 - Sy;1 513 Sa4 S4
* % * * 2 (52)
= (S, Sy, - Sp; Sy (54 Sy3 = Sp3 Sy = |8y S5y
and
* * * * * ‘ *
S,3 Sy Sp1 S34 = Sp4 Si3 51 S34 = Sa3 Syg Spy 83
* % * % 2 (53)
(S,4 S31 = Sz3 S1q) (Spq Sy = Sp1 S39) = | Sy 531'
Therefore from (52) and (53)
% * * ¥
(Sp4 S31 - Sp1 S3g) (Sp4 813 = Sp3 S51y)
X * % * (54)
= (Spq S13 = Sp3 S1g) (Sz4 S3; - 1 S34)
and finally
S, .S s ¥s. ¥ - s . *s s
55y 24531 = S215%4 524531 " S2153 (524531 - 5153
= —— % =
S,4 S13 = S22 514 5,4 S13 = 533 54 534513 = 52254
or
de§ T11 is real.
From this and equation (4b), it follows immediately that det T22 is real.
As a consequence of (41)
* %
(detle) = (1=~ detT“) = la (detT“)
= 1o detT ), (56)
= det le

and det le and det T21 are also real.

*.
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(1) " Canonical Form" of a Four-Port .

Under rather general conditions it is possible to represent a four-
port by means of an I. D. C. with a certain two-port in each of its lines: it is
necessary that the given four~port be linear, lossless and reciprocal, and not
belong to a set.of degenerate structures which will be defined later. In what
follows we shall assume, unless otherwise stated, that a " given arbitrary four-
port" will satisfy the conditions stated above, and hence can be represented as

described.

Let us first consider the transfer matrix of an 1. D. C. witha

iossless, reciprocal two=port in each line. Assume that the transfer matrix of

each two -port is non - singular.

I 7\ .
D T——HAF—-—
_:: '
™
18] \f

—1CLE
g S oy

A, B, C, D, denote the transfer matrices of each of the two=ports and t denotes

the partitioned transfer matrix of an I. D.C.

The transfer matrix we are seeking is given by .

T = T2 t T1 (57)
h
wnere . A 0
= . t = T =
1 .
, , 2 0o lc (58)

or
.. At | D j At, B
Ct, D i Ct,, B

We will now try to define the matrices A, B, C, D, tir tlZ , tZl’

so that T will be equal to the transfer matrix of a given arbitrary four-port.

(59)
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For our purposes one twowport, say A, can be chosen initially

in an arbitrary manner . We find

A =X
-1 -nl
B = (tlz) X le
, =1 -1 (60)
C = Ty (Th) " Xty, ()
-] =]
D = (t,)) X Ty,
where X is arbitrary .
The submatrices tij yi=1,2, j=1, 2, are as yet unknown.
From a consideration of equations (39) it is apparent that for
(61)
<
0 = det t11 3 1
form 1
s det t = 1
0 = e 12 =
o < det t“ z 0
< form 2
1 = det tlZ < o
1 = det 1:11 < oo
form 3
- 00 < det t:12 = 0
and 4
det t = ett = ]l =~ dett
11 1
22 2 (62)
det tlZ = det t21

The values that det ti' can assume for a fixed i and j is the real line
and furthermore the real line may be partitioned into three intervals each in-
terval corresponding to a distinct form of I.D. C. The intervals are disjoint
except for the values 0 and 1. This seems to indicate that for these values of
the determinant there may correspond two forms of I. D. C. However it will be

shown later that for the value of det tij equal to 0 or 1 the transfer matrices
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corresponding to two different forms collapse into the same form.

Suppose we are given the transfer matrix of a four~port. The
determinant of some submatrix, say det T, must lie in one of the three
disjoint intervals or else assume the values 0 or 1 because each sub~determinant
is real. See above, equations (40) to (56). Furthermore for a linear, lossless

reciprocal four-port it was shown earlier that

det T11 detT22 = ] def:'I'12

(63)
det T = det T21

12
Therefore a subdeterminant of an arbitrary four~port must satisfy
the inequalities associated with one and only one form of I. D. C. A consequence

of this is that to every four-port there corresponds a unique form of I. D. C.

Once the form of coupler corresponding to a given four=-port has
been determined, its coupling coefficient a? can be ‘found from one of the

following formulae:

2 _
0 § det:Tll <= 1 form 1l and a“ = cletTll
7 det:Tll
- 00 -<- det T = 0 form 2 and a“ = —_— (64)
o< det T, -1
1
1 gdetT < o form3andu2= _
H detT11

It should be observed that although the form of the I.D. C.
associated with arbitrary four~port is unique, the form of the representing

structure is not unique due to the arbitrary choice of a two~port.
Once a®has been determined the matrix t is known.

Henceforth a structure of the form of fig. 4 which represents a given

arbitrary four-port will be called the canonical form of the four-poxrt .
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(iii) Tllustrations
As an illustration of the technique we shall try to find the

canonical forms of some rather special four-ports.

Consider the device shown below.

r————-- 1
] — [3
| A 1
l - |
2] 4
e
1 L T
L

where Al and B1 are the transfer matrices of the indicated two~ports. The

transfer matrix of this device is easily seen to be of the form

Al , 0
0 ' B!l
From equation (59)
Al
= At D (68)
0 = At, B (69)
0 = Ct,, D (70)
1
B = Ct,, B - (71)
1
det A" = dett,, = 1

Now from equation (61) the I. D. C. associated with the given device appears to
be of either form | or form 3. But we know from (64) that if it is of form 1 then

az = det A1 = ]
and if of form 3
o 1 -
det A

Also it is nbvious that equations (63) are satisfied.
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Hence we find that the scattering transfer matrix of the I. D. C.

associated with the given device assumes the form

o o = ©O
o - S O

1
0
0
0

for both type 1 and type 3

For the determination of the two-ports let A = X, where X is an
arbitrary two-port. Since t, = 0, Bis also arbitrary Let B = Y , whereY

is some arbitrary two-port. Then the two-ports are

A = X
B o= Y
¢ = Bly"!
D = x~!al

The transfer matrix of this device is




We require

det 0 = dettll

26

AtllD

Af:12 B

CtZlD

B
Cty

= 0

Hence the corresponding I. D. C. will be either of form 1 or 2

2

This implies a“ = 0 and we see that both form 1 and form 2 collapse into
0 0 j o
0 0 -
j 0 o0
0 -3 0 o0

To determine the appropriate two ports let A = X

B = -j o x tal

The canonical form is

-jov's

-joX8

C = Y, Y arbitrary
D = -joy!n!

f T T T T T
io

jo

Bk
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(iv) Canonical Form of Two Four=Ports .

Suppose two arbitrary four-ports are connected as shown below .

The composite four-port defined by the dashed lines will be denoted
by A We now consider the problem of relating the coupling coefficient a? of
the I. D. C associated wit_h A to the coupling coefficients a412 and a22 of the
I.D. C.'s associated with L and R respectively.

We know that any four-port can be associated with just one of three
possible forms of I. D. C Consequently there are nine different combinations of
forms that can be associated with L and R For each of the nine possible cases

we shall evaluate az in the following four steps:

a) compute the transfer matrix T of A

b) evaluate det T 11

c) de‘termine upper and lower limits for det T11

d) a“will assume one of the values of either equation
(64) or (65) or (66)

If L and R are put in their respective canonical forms Ais trans-

formed into
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where L and r are the . D. C. ' s associated with L and R respectively. The

transfer matrix T of A can be given as

T = T6T5T4T3 TZTI (72)
where
L
Ty * T2 717 )
21 22
a
T = T = |
3 4 0
D 0
i = T =
5 6 0 B
or
. DrllaAl“D + DrlzeClZID Dr“aAl 12B + DrlZeClzzB
BeraAl“D + BrZZeCIZID BeraAl lzB + BrzzeClzzB
det Tll = det (Dr“aAl”D + Dr12 eClZlD)
(73)
= det (r“a.Al11 t T, eClZI)
= det(r,,aat, ) @+2, “tattatlo o lo ecr )
11 “ 11 11 11 12 21
Now
det (I1+K) = detK+ TrK+1 (74)
where K is a 2 x 2 matrix.
Define
-1 =1 a1l -1
l“ A a r,; T2 eCl21 = K
Then

detTll = det (r“l“) det (I + K) (75)



-1
detT“= det (r“l“) Eiet(l” T

29 - h

or

(76)
-1
*i2 45

For each of the nine possible combinations of forms of f and r,
equation (76) has been evaluated. The results of these computations appear in

table 1.

The next step in our determination of a?is to determine the range

of values that det T,y can assume for each of the nine cases.

Observe that in each entry of det T11 in table I the trace of a com~
plicated matrix product is required. We shall now discuss an abstract matrix M
that is assigned certain properties. This consideration will facilitate the evalua-

tion of the traces in question.

(v) Range of Tr M

Let M be a 2 x 2 matrix. Suppose there exists a scaler \for which
MX = X (4))

where

The values of A which satisfy this equation are called the
characteristic values of M . If \ is a characteristic value of M,a non-zero vector
X which satisfies (20) is called a characteristic vector of M corresponding to the
characteristic value X\ For brevity we shall denote "characteristic value"

by c.v. For a 2 x 2 matrix M there are two c. v.'s.

Two cases arise:
case] . the c.v are distinct

case II the c v. are equal

Case When the c. v of a 2 x 2 matrix M are distinct then it can be demon-~

strated that there exists a non-singular 2 x 2 matrix P such that

—

) + Tr l“"'l(a,A)"1 r“' lrlzeClZl) +l
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where

and )‘l and )‘2 arethe c v. of M.

Case Il . When the c. v. of M are not distinct, there exists a non-singular

matrix Q such that

M = o l'ma
where
X 1 A
% = or
0 A 0

with \ being a c.v. of M.
Consider a matrix M1 for which

det Ml =1
+
M1 + oM 1= o
and a matrix M2 for which

det M2= -1

+ -
M2+ UMZ— -0

(79)

(80)

(81)

(82)

(83)

(84)

(85)

We will now try to obtain bounds for the range of values that the traces of M1

and M2 can assume

For M1 there are two cases to consider.

Casel Thec.v. of M1 are distinct.

where xl # )\2

(86)
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Two matrices A and B are said to be similar if there exists a

non-singular matrix P such that

A= plap (87)
It is apparent that
det A = det B (88)
Also it can be shown that
Tr A = Tr B _ (89)

Using this information it follows from (29) that .

Ay, = R (90)
and
TrM; = N +X, = )\1+j‘l_1 (91)
Since)\lisac.v. ofM1
M;X = )\ X (92)
Now
M%) Foo My = xF ) fomp x = xtox (93)
aXTe o x) = xtex
xl*xlx%x = x Tox
In1% xtox = xtox

1£X*ex 4 0, then

Iyl o= (94)

For convenience denote A 1 by € 30 where 0 is some real number .

TrM1= )\1+—1X—1 = 2 cos 0O
(95)
TrM1=2cose -® <0<

0 real



and

X toex = o

From (83) write

Since Ml+ is similar to Ml"l

Tr Ml+ =
Also since det M1 = 1
Tr M1
1
We conclude
(Tr M) = TrM

or Tr M1 is real .

From (91)

Since Tr Ml is real
1

]+ =)
1 )\1

This can be written as

and for it follows that

N F L

or that )\1 is real

Therefore 1

Tr Ml-

A

1

1

1 e
(\ 1t ‘Tl)

real

(96)

(97)

(98)

(99)

(100)

(101)

(102)

N oo (103)

(104)

(105)

INEF 1, % 40
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For convenience denote X, by ¢ ¢ where ¢ 18 real and ¢ # 0.

Trm, = 4+ = 2cosno : (106)

2<TrM, < © (107)

We now summarize our results:
Casel . The c.v. of Ml are distinct
From (96) and (107)

-2 §TrM1<co

Now we shall consider

Case I The c. v. of M1 are equal .

From (81)
Tr Ni1 = 2\ (109

where A\ is a c.v. of M1 . Since det M1 = 1, it follows that

o= E (110)

or (111)

and

+

TrM, = 22 (112)

However since we are interested primarily in the range of values

that Tr M, can assume we see that the information contained in (112) is already

contained in (108) .

We conclude that for a matrix Ml if

+
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then

A

-2 = TrM; <o (115)
We now consider the matrix M, which has the properties that

det M, = -1 ' ' (116)

M," oM, = -0 | (117)

Casel. the c.v. of MZ are disti'nct

' )‘1 0
mz =
0 )‘2
From (88)
det M2 = )‘l )‘2 z ] (118)
N, o= e
2 R (n $ 0)
TrM, = A, = 1
2 I : (119)
Since )\lisac.v of MZ
MZX = )\IX (120)

In a manner similar to (93 a) we find

2 +
IN]© X+oX = X" 0o X (121)
which implies Xt oX = 0 for otherewise there would be a contradiction.
Since
+ -1 -1
M," = -=oM, @ : (122)
it can be shown in a manner analogous to that used in deriving (101) that
3 ,
Tr M, = (Tr MZ) (123)
or Tr M, is real.

2



35

Then ’
1 1 * (
or
=) 1 =S )= 0 A to (125)
Ix

N = A" forallx,, A, } 0 ' (126)

or that )\1 is real .
For convenience denote )\1 by ce where 6 is real, - o <6 <wm

Then
TrM2= )"1 - —XT = 2 8inh 6 - 0<06<mw (127)
and conclude that

-oo<TrM2<oo . (128)
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(vi) Determination of the Form of I. D. C. Associated With the Composite

Structure .

Using the results of the previous development it will be an easy
matter to determine the traces of each of the nine matrix products appearing
in table I.

Let us denote the matrix product corresponding to a type r and type £ device

appearing in table I by

Mrl r = 1, 2, 3
L =1,2,3
For example M, = (&A)'lpcr Cco .
The product
+ (129)
(Mrl) 9 <Mrl) .
and
det Mrl (130)

for each of the nine cases has been evaluated and these results appear in
table II.

From (115) and (118) we find

-2 s TrM_, <o (131)
rf
when M.H is any one of the matrices M M22 » M3z0 Mg, Myq
When Mrl is any one of Myys M)y M,y My, we find
'm<Terl <w . (132)

Using these two inequalities and the expressions for det T 11 in tablel ,

the range of det Tll may be determined. The results of this effort are shown in
table III . Also listed in table III is the possible form of the I.D. C. associated
with A'which has been determined through the use of equations (64) , (65) and (66) .

Observe that if r and £ are each of type - three form then the form of the
couipler associated with Ais certain to be of type ~ three.

The coupling coefficient a? can then be written down at once ,
. 2
az . (a.l az)
2
(ByBp™ + 1 =Py B, Tr My,

(133)
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where

My, ¥ (@A) 1 pgce . (134)

It will be useful at this time to consider a transformation of the structure
comprising fig. 10, which is interesting in its own right but which also has

special significance for our present discussion.

We shall now show that every device possessing the structure indicated

in fig. 4 can be transformed into the following system .

D 7\ |z 7/\V v
2 ( r ‘
B /[ \ & [

It will be recalled that in our derivation of the canonical form of a given

four~port, one of the two-ports could be chosen arbitrarily.

Let L be a given four-port. In constructing the canonical form of L
suppose we choose A arbitrarily and let A = X . Assume thattheI.D.C. , L,
associated with L. is known. Then the other three two~ports namely B, C, D, are
uniquely determined in terms of LL and X or equivalently in terms of £, L and X .

From equation (60) and corresponding to our new notation
C = Ly, (L) X, (1,7 135
22 iz 12 V22 (135)
Similarly let £ be the arbitrary two~port in the canonical form of the
four~port R. This time we shall choose
- l - 1 - l - 1
€= C = 1, )" XL, (L)) (136)

With this choice £ becomes
E= (. ) vt () XL, (L) (Ry)UR
11 12 “22 Y12 12 W22 12 11 (137).

From equation (72) it is seen that

ax 0
TeT3 = | ——T— (138)
0 €c
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becomes

T = - (139)

o
-

Therefore fig. 10 can be expressed as

—{7] a7 —7—

L r
=L/ N2
and if we define
ax = 2 .(140)
then fig. 11 obtains.
For certain forms of r and { the matrix product
(e )ty )7 (141)
can be expressed in the form
k1 (142)
where k is a scaler. One such case is when £ and r are both of type~three. For
this case
k = ! (143)
Fj1

where ﬁz refers to "r" and Bl refers to "4".

Under these conditions Z can be expressed as

Z = X""kKX (144)

where

= -1 -1
K = Lj, (Ly,) " (R Ry, (145)



and k is some known constant.
matrix k K (see fig. 13) .
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Thus wé observe that Z is similar to the

This leads to an interesting result namely that if (141) can be expressed

as (142) then it is not possible to choose X such that Z will be of any desired

form.

Proof: Suppose it were possible to choose X so that Z could have any desired

form. In particular require that

TrZ $ TrkK (146)
But from (144)
TrZ = TrkK (147)
which contradicts our assertion. The result follows immediately.
Observe that a simple choice for X is -
X =1 (148)
With this choice
z=a (149)
—o X kK g —
2 ‘
—_ B [
If M33 of equation (134) is computed under these conditions we find
NP
33 - Q@ (150)
Since Tx'a-1 = Tr Q, (because det 2= 1)
Tr M = Tr Q. (151)

33
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Equation (133) can then be written as

2 (@ “2)2
a“ = (152)

2

We shall now consider some special values of a? and the corresponding

condition that is imposed on Tr 2.
A useful relation is

a2 = (o, az)z S : (153)

which requires

Trg = B B, . (154)

Angther special case is

o’ = | (155)
which requires '
B, B,
Tra = —— + —— (156)
p?. p1

This result has an intercsting interpretation. When the c. v. of g are distinct

then a is similar to a matrix of the form
0
1
0 e
N
where A\ and —i—- are the two ¢.v. of 3. 1f we define

P

—_— = Y
ﬁz (157)

= .| -
Then A = y or A = T thhfi1 $ [32
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When B 1 = ﬁz then (4 is similar to a matrix of the form

1 1 1 0

i d P ——
L —\
whe;'e - -
| p
I51 °
1 2 ‘ (158
a = p SR )
2 .
0
pl ’
and

P~

' ° ! ! (159)
or
0 1 0 ! Py P2

for some matrix P .
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TABLE 1II
11 Ci2 Ciz3
det C11 = 1 det ClZ x =] det C13= -1
c..toc . =0 c.toc. w-0 {c.Tec,. = -o
11 117 12 12 13 13
Cyz1 C,2 Ca3
C + C,, = =0 + gC,, =0 C +orC =g
21 9%21 7 ‘22 22 23 25 :
Cay, Ciz. Cis
det C31 = -1 det C32 = 1 det C:‘,3 = ]
C +ac = G C Jro'c =0 - C +ac =0
31 31 32 32 33 33

TABLE IV

-oo<det'I‘11<1

®. @

-oo<det.T“<oo

®©. @. @,

-co<detT“<oo‘

® @ 6.

-oo<detT11<oo

® @

<
O=det:T11 <oo

@’ @:

- <
@ detT“<oo

©.0.0,

-oo<detT“<oo

®. @. .

-cn<detT“<cn

©0.@.0.

<
1l = detTll < o0
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